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We theoretically demonstrate that the three-dimensional (3D) coherent laser waves formed by the de-

generate Laguerre-Gaussian modes with different longitudinal indices are well localized on rotating tro-

choidal parametric surfaces. We further use a large-Fresnel-number laser system to realize the existence of

the laser modes related to trochoidal coherent states. Experimental results reveal that the exotic laser

modes generally originate from a superposition of two degenerate standing-wave trochoidal coherent

states.
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It is known that the propagation of a coherent optical
wave inside a laser resonator is closely similar to the
propagation of a quantum wave inside a mesoscopic struc-
ture [1]. This profound similarity has been growingly
employed to realize many quantum signatures in optical
context, such as quantum chaos phenomena [2], disorder
induced wave localization [3], geometric phases [4], and
the issue of quantum tunneling [5]. Recently, various laser
systems have been widely used to study optical pattern
formation including the Laguerre-Gaussian modes,
Hermite-Gaussian modes, and the generalized coherent
states that form a general family to comprise the
Hermite-Gaussian and Laguerre-Gaussian mode families
as special cases [6,7].

In modern physics, classical orbits have been found to
play a critical role in explaining carriers transport in bal-
listic mesoscopic structures [8] and oscillations in the
photodetachment cross sections [9]. The Hermite-
Gaussian modes are identical to the eigenstates of a two-
dimensional (2D) harmonic oscillator [10]; the related
classical periodic orbits are the Lissajous figures. On the
other hand, the Laguerre-Gaussian modes can correspond
to the eigenstates of a charged particle in crossed electric
and magnetic fields [11]; the classical periodic orbits are
the trochoids that include cycloids, epicycloids, hypocy-
cloids, cardioids, etc. By definition, a trochoid is a roulette
given by rolling a circle on or in a second circle. Trochoidal
orbits are ubiquitous in nature such as in planetary dynam-
ics [12], ocean waves [13], Belousov-Zhabotinsky reac-
tions [14], and crank-and-slider mechanism. Although
laser resonators have been successfully employed to illus-
trate the correspondence between quantum wave functions
and classical Lissajous orbits [15], there has been no study
with regard to the laser modes related to the trochoidal
orbits thus far.

In this Letter we originally verify that the coherent
superposition of the degenerate Laguerre-Gaussian laser
modes with different longitudinal indices leads to the for-
mation of three-dimensional (3D) coherent states concen-
trated on rotating trochoidal parametric surfaces. With the

quantum-classical isomorphism, the trochoidal coherent
states are derived to be a canonical transformation of the
Lissajous coherent states. Furthermore, we experimentally
employ a large-Fresnel-number laser system to generate
the laser modes related to the trochoidal coherent waves.
Since the laser cavity is an excellent analog system for
studying the coherent waves, the present findings will be
useful for understanding the fundamental behavior of wave
functions at the border of the classical and quantum
regimes.
First of all, we verify that the longitudinal-transverse

coupling in spherical laser cavities can bring about the 3D
coherent waves to be localized on rotating trochoidal para-
metric surfaces. The wave function of Laguerre-Gaussian
mode with longitudinal index l, transverse radial index ~n,
and transverse azimuthal index ~m in cylindrical coordi-

nates (�, �, z) is given by [10] �ðLGÞ
~n; ~m;lð�;�; zÞ ¼

�ðLGÞ
~n; ~m ð�;�; zÞeið2~nþj ~mjþ1Þ�GðzÞe�i�~n; ~m;lð�;zÞ, where
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=zRÞ2

p
, �~n; ~m;lð�; zÞ ¼ k~n; ~m;lz½1þ �2=

2ðz2 þ z2RÞ�, w0 is the beam radius at the waist, and zR ¼
�w2

0=� is the Rayleigh range, Ll
pð�Þ are the associated

Laguerre polynomials, k~n; ~m;l is the wave number, and

�GðzÞ ¼ tan�1ðz=zRÞ is the Gouy phase. In terms of the
effective length L, the wave number k~n; ~m;l is given by

k~n; ~m;lL ¼ �½lþ ð2~nþ j ~mjÞð�fT=�fLÞ�, where �fL ¼
c=2L is the longitudinal mode spacing and �fT is the
transverse mode spacing. It has been evidenced [15] that
when the ratio �fT=�fL is close to a simple fractional, the
longitudinal-transverse coupling usually leads to the fre-
quency locking among different transverse modes with the
help of different longitudinal orders. Consequently, when
the mode-spacing ratio �fT=�fL is locked to a rational
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number P=Q, the group of the Laguerre-Gaussian modes

�ðLGÞ
~n0þ~pk; ~m0þ~qk;l0þsk with k ¼ 0; 1; 2; 3; . . . can be found to

constitute a family of frequency degenerate states, pro-
vided that the given integers (~p, ~q, s) obey the equation sþ
ð2~pþ ~qÞðP=QÞ ¼ 0. For convenience, the integer s is
taken to be negative. The equation sþ ð2~pþ ~qÞðP=QÞ ¼
0 indicates that 2~pþ ~q needs to be an integral multiple of
Q, i.e., 2~pþ ~q ¼ KQ, where K ¼ 1; 2; 3; . . . .

With the coherent-state representation [15,16],
the 3D coherent wave formed by the family of
the degenerated Laguerre-Gaussian modes

�ðLGÞ
~n0þ~pk; ~m0þ~qk;l0þsk can be expressed as j�~p;~q;s

~n0; ~m0;l0
ð�0Þi ¼P

M
k¼�M CM;ke

ik�0 j�ðLGÞ
~n0þ~pk; ~m0þ~qk;l0þski, where CM;k ¼

2�Mð 2M
MþkÞ1=2 is the weighting coefficient, ðnkÞ ¼ n!

k!ðn�kÞ!
represents the binomial coefficient, the parameter �0 is
the relative phase between various Laguerre-Gaussian
modes at z ¼ 0. The weighting coefficients CM;k come

from the representation of the quantum spin coherent states
[16] that makes the wave functions have the classical
picture of the minimum uncertainty for a fixed value of
M. In a large-Fresnel-number laser cavity, the resultant
field structure with the minimum mode volume can have
the lowest lasing threshold to break into oscillation at first.
The mode volume is correlated to the localization degree of
the wave function. More importantly, the 3D coherent
states formed by the degenerate modes with different
longitudinal indices have smaller mode volumes than the
2D coherent states formed by the degenerate modes with
the same longitudinal index. With the expression of Eq. (1)
, the 3D coherent state can be rewritten as

j�~p;~q;s
~n0; ~m0;l0

ð�0Þi¼ j�~p;~q
~n0; ~m0

ð�0Þieið2~n0þj ~m0jþ1Þ�GðzÞe�i�~n0 ; ~m0 ;l0
ð�;zÞ

(2)

with

j�~p;~q
~n0; ~m0

ð�0Þi ¼
XM

k¼�M

CM;ke
ik’ðzÞeik�0 j�ðLGÞ

~n0þ~pk; ~m0;~qk
i; (3)

where ’ðzÞ ¼ ð2~pþ ~qÞ�GðzÞ. Equation (2) indicates that
the transverse pattern of the 3D coherent wave is utterly

determined by the wave function hx; y; zj�~p;~q
~n0; ~m0

ð�0Þi.
Since the Hermite-Gaussian modes of the laser resonator

are isomorphic to the eigenstates of the 2D quantum har-
monic oscillator, we can use the quantum operator algebra
of the harmonic oscillator to deduce the subtle relationship
between the Hermite-Gaussian and Laguerre-Gaussian co-

herent states. With an unitary operator Û in the Schwinger
representation of the SU(2) algebra, the Laguerre-Gaussian
mode can be expressed as

j�ðLGÞ
~n; ~m i ¼ Ûj�ðHGÞ

~n;N�~ni

¼ XN
K¼0

e�iK�=2dN=2
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K;N�Ki (4)
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n;m ðx; y; zÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(5)

where Hnð�Þ are the Hermite polynomials, N ¼ 2~nþ j ~mj,
and dj

m0;mð�Þ is the well-known Wigner d coefficients.

With the relation j�ðLGÞ
~n; ~m i ¼ Ûj�ðHGÞ

~n;N�~ni, we have

j�~p;~q
~n0; ~m0

ð�0Þi ¼ Ûj�p;q
n0;m0

ð�0Þi, where j�p;q
n0;m0

ð�0Þi ¼P
M
k¼�M CM;ke

ik’ðzÞeik�0 j�ðHGÞ
n0þpk;m0þqki is the Hermite-

Gaussian coherent state, n0 ¼ ~n0, m0 ¼ ~n0 þ j ~m0j,
p ¼ ~p, and q ¼ ~pþ ~q. The state j�p;q

n0;m0
ð�0Þi has been

verified to have the intensity localized on the Lissajous
parametric surface: x ¼ Re½Xð#; zÞ�; y ¼ Re½Yð#; zÞ�,
where 0 � # � 2�, �1 � z � 1, Xð#; zÞ ¼ffiffiffiffiffi
n0

p
wðzÞei½q#þð’ðzÞþ�0=pÞ�, and Yð#; zÞ ¼ ffiffiffiffiffiffi

m0
p

wðzÞeip#
[15]. To be precise, the Lissajous parametric surface is
formed by the Lissajous curves with the phase factor
varying with the position z. Using the correspondence
between classical canonical transform and quantum uni-
tary transform [17] and the isomorphic relation between
SU(2) algebra and SO(3) algebra, we can deduce the

Laguerre-Gaussian coherent state j�~p;~q
~n0; ~m0

ð�0Þi to be ex-

actly localized on the parametric surface: x ¼ Re½ ~Xð#; zÞ�;
y ¼ Re½ ~Yð#; zÞ�, where

~Xð#; zÞ
~Yð#; zÞ

" #
¼ 1ffiffiffi

2
p e�ið�=4Þ �e�ið�=4Þ

eið�=4Þ eið�=4Þ

" #
Xð#; zÞ
Yð#; zÞ

� �
:

(6)

It can be easily found that the parametric surfaces in Eq. (6)
have the transverse patterns to be the trochoidal curves
rotating with the position z; therefore, we call these sur-
faces the trochoidal parametric surfaces. Following the
quantum-classical isomorphism, the trochoidal parametric
surface can be pictured as a canonical transformation of the
Lissajous parametric surface. Figure 1 shows an example
to make a comparison between the Lissajous and trochoi-
dal parametric surfaces in the range from ’ðzÞ ¼ �2� to
’ðzÞ ¼ 2� with ð~p; ~qÞ ¼ ð�1; 9Þ, P=Q ¼ 2=7, and �0 ¼
0. Figure 2 depicts four typical numerical transverse pat-

terns for the coherent states j�~p;~q
~n0; ~m0

ð�0Þi at z ¼ 0 with

different (~p, ~q) and (~n0, ~m0). The choice of M ¼ 3 in the

FIG. 1 (color online). Lissajous (left plot) and trochoidal (right
plot) parametric surfaces for the 3D coherent waves in the range
from ’ðzÞ ¼ �2� to ’ðzÞ ¼ 2� with ð~p; ~qÞ ¼ ð�1; 9Þ,
ð~n0; ~m0Þ ¼ ð30; 100Þ, P=Q ¼ 2=7, and �0 ¼ 0.
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calculation is just for convenience of presentation because
the spatial morphologies of the coherent states can be
numerically verified to be strongly concentrated on the
trochoidal parametric surfaces as long as M � 2.

Although we have discovered the 3D coherent waves
localized on the Lissajous parametric surfaces in our prior
laser experiment with the off-axis pumping scheme [15],
the coherent waves related to the trochoidal parametric
surfaces were not observed. Recently, we performed sys-
tematic experiments and found that the trochoidal coherent
waves could be simultaneously generated by exciting the
orthogonally polarized Herriott-type nonplanar geometric
modes [18]. The Herriott-type nonplanar modes have el-
liptical patterns of spots in the transverse plane. We ex-
perimentally found that these nonplanar geometric modes
could be generated in a laser with the transverse orders
approximately higher than 1500. Here we use a a-cut
2.0 at.% Nd:YVO4 crystal with the length of 2 mm and
the cross section of 8� 8 mm2 to comply with the require-
ment of the extremely high transverse orders. The cavity
configuration is the same as in Ref. [19]. A microscope
objective lens mounted on a translation stage was em-
ployed to reimage the tomographic transverse patterns
onto a CCD camera. To measure the far-field pattern, the
laser output was directly projected on a screen at a distance
of �50 cm from the cavity and the scattered light was
captured by a digital camera.

We experimentally find that more than 110 different
laser modes related to distinct 3D trochoidal coherent
waves can be generated with the degenerate cavities in
the range of 1=6 � P=Q � 1=3. Figures 3(a)–3(d) show
four typical experimental transverse patterns observed at
the beam waist z ¼ 0 in different cavity lengths. The
manifestation of nearly perfect trochoidal curves confirms
the laser modes to be associated with the trochoidal coher-
ent waves. On the other hand, the bright spots on each
pattern correspond to the Herriott-type mode. Although the
polarizations of the trochoidal laser mode and the Herriott-
type mode are found to be mutually orthogonal, the
Herriott-type mode cannot be removed with an intracavity
polarizer because the insertion loss will cause the laser to
stop lasing. Nevertheless, an external polarizer can be used
to measure the tomographic transverse patterns of the
trochoidal laser modes.

It is known that there is a tendency for mutual repulsion
of the frequencies for the low-order modes in class-B lasers

[20]. As a result, it is important to verify whether the
trochoidal laser modes are operated in the single-frequency
oscillation or not. The optical spectral information of the
laser is monitored by an optical spectrum analyzer
(Advantest Q8347) with a resolution of 0.003 nm. Since
the transverse mode spacing of the cavity is approximately
0.025 nm, the optical spectrum can be clearly resolved. We
measured the optical spectra of the trochoidal laser modes
and confirmed these modes to be in the single-frequency
oscillation. Moreover, the power spectra of the trochoidal
laser modes were also detected and did not reveal any
dynamics. In other words, the trochoidal laser modes are
indeed stationary states.
Even though the transverse patterns of the trochoidal

laser modes at z ¼ 0 display precise trochoidal curves, the
propagation-varying transverse patterns are observed to be
more complicated than a rotating trochoidal wave.
Experimental results reveal that the laser modes are asso-
ciated with the standing-wave trochoidal coherent states.

The coherent state j�~p;~q
~n0; ~m0

ð�0Þi in Eq. (3) behaves as a

traveling wave in the transverse plane. The standing-

wave representation is expressed as jS~p;~q
~n0; ~m0

ð�0Þi¼P
M
k¼�MCM;ke

ik’ðzÞj�~p;~q
~n0; ~m0

ðk;�0Þi, where j�~p;~q
~n0; ~m0

ðk;�0Þi ¼
Re½eik�0 j�ðLGÞ

~n0þ~pk; ~m0þ~qki�. Figure 4 shows the numerical

results for the tomographic transverse patterns of

jS~p;~q
~n0; ~m0

ð�0Þi. To be precise, a standing-wave trochoidal

coherent state consists of two trochoidal transverse waves

FIG. 3 (color online). Experimental transverse patterns ob-
served at the beam waist z ¼ 0 in different cavity lengths:
(a) P=Q ¼ 1=5; (b) P=Q ¼ 1=6; (c) P=Q ¼ 2=7;
(d) P=Q ¼ 2=9.

FIG. 4 (color online). Numerical results for the tomographic
transverse patterns of the coherent state jS~p;~q

~n0 ; ~m0
ð�0Þi with

ð~p; ~qÞ ¼ ð�1; 9Þ, ð~n0; ~m0Þ ¼ ð30; 100Þ, M ¼ 3, P=Q ¼ 2=7,
and �0 ¼ 0. Parametric-surface plot for illustrating the 3D
localization.

FIG. 2. Numerical transverse patterns for the coherent states
j�~p;~q

~n0; ~m0
ð�0Þi at z ¼ 0 with M ¼ 3 and �0 ¼ 0: (a) ð~p; ~qÞ ¼

ð�1; 7Þ and ð~n0; ~m0Þ ¼ ð25; 105Þ; (b) ð~p; ~qÞ ¼ ð�1; 8Þ and
ð~n0; ~m0Þ ¼ ð23; 107Þ; (c) ð~p; ~qÞ ¼ ð�1; 9Þ and ð~n0; ~m0Þ ¼
ð20; 110Þ; (d) ð~p; ~qÞ ¼ ð�1; 11Þ and ð~n0; ~m0Þ ¼ ð14; 116Þ.
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rotating in the opposite direction. A parametric-surface
plot is also shown in Fig. 4 for illustrating the localization.
It is worth noting that the traveling-wave trochoidal coher-

ent states j�~p;~q
~n0; ~m0

ð�0Þi have an angular momentum of ~m0@

as the Laguerre-Gaussian modes j�ðLGÞ
~n0; ~m0

i possess, while
the standing-wave trochoidal coherent states jS~p;~q

~n0; ~m0
ð�0Þi

have no angular momentum.
Based on thorough experiments and numerical analyses,

we discover that the experimental trochoidal waves can be
analytically expressed as a quadrature superposition of two
degenerate standing-wave trochoidal coherent states:

jEi ¼ jS~p;~q
~n0; ~m0

ð�0Þi þ ijS~p;~q
~n0þ1; ~m0�2ð�0Þi: (7)

Note that the experimental transverse orders ~n0 and ~m0

exceed 1500; however, the numerical transverse orders are
limited to approximately 150 due to a numeric overflow.
Even so, the spatial features of the trochoidal coherent
waves are generally independent of the transverse indices
~n0 and ~m0 for a given (~p, ~q, �0). Therefore, we use lower
transverse orders in the calculation to compare with the
experimental results. Figures 5(a0)–5(h0) illustrate the nu-
merical transverse patterns calculated with Eq. (7) and the
parameters of ð~p; ~qÞ ¼ ð�1; 8Þ, ð~n0; ~m0Þ ¼ ð25; 115Þ,M ¼
3, and �0 ¼ ��=2. It can be seen that the theoretical
features agree very well with the experimental results
shown in Figs. 5(a)–5(h). Note that Figs. 5(h) and 5(h0)
correspond to the far-field patterns and the same patterns
have appeared at z ¼ L shown in Figs. 5(d) and 5(d0).

In summary, we have theoretically demonstrated that the
coherent superposition of the degenerate Laguerre-
Gaussian modes with different longitudinal indices gener-
ates a kind of 3D coherent waves with localization on
rotating trochoidal parametric surfaces. Moreover, we
have employed a large-Fresnel-number laser resonator to
confirm the existence of 3D trochoidal coherent waves.
The experimental laser modes are found to come from a
superposition of two degenerate standing-wave trochoidal
coherent states.
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